{-# LANGUAGE TypeFamilies, ExplicitNamespaces, TypeOperators, FlexibleInstances #-} {-# LANGUAGE DataKinds, UndecidableInstances, ConstraintKinds, KindSignatures #-} {-# LANGUAGE ScopedTypeVariables, FlexibleContexts #-} {-| the cardinality of a finite type, at the type-level. -} module Enumerate.Cardinality where import GHC.Generics import Data.Vinyl (Rec) import Data.Proxy (Proxy) import Data.Void (Void) import Data.Word (Word8, Word16) import Data.Int (Int8, Int16) import Data.Set (Set) import Numeric.Natural (Natural) import GHC.TypeLits (Nat, KnownNat, natVal, type (+), type (*), type (^), type (<=?)) import Data.Proxy (Proxy(..)) import Spiros.Prelude -- alternatives: -- class Finite a where -- type GenericCardinality a = GCardinality (Rep a) -- class Cardinality a n -- class Finite a where type Cardinality a :: Nat {- needs DefaultTypeInstances, or we have to pick between deriving instances (the user should) and manually providing them (the author should, for base types like Char, because their Generic rep is huge and slows down the compiler to a stop) -} -- class GFinite a where -- default type (Generic a) => Cardinality a = GCardinality (Rep a) -- type instance {-# OVERLAPS #-} (Generic a) => Cardinality a = GCardinality (Rep a) {-| a type is finite, i.e. has a bounded size. laws: * consistent with "Enumerate.Enumerable": * @'cardinality' = 'reifyCardinality'@ i.e. the value-level (a 'Natural') matches the type-level (a 'Nat') e.g. >>> reifyCardinality ([]::[Bool]) 2 -} class Finite a where type Cardinality a :: Nat type Cardinality a = GCardinality (Rep a) -- base types. TODO any more? -- | @0@ instance Finite Void -- | @1@ instance Finite () -- | @2@ instance Finite Bool -- | @3@ instance Finite Ordering instance Finite (Proxy a) where type Cardinality (Proxy a) = 1 -- | @2^8@ instance Finite Int8 where type Cardinality Int8 = 256 -- | @2^8@ instance Finite Word8 where type Cardinality Word8 = 256 -- | @2^16@ instance Finite Int16 where type Cardinality Int16 = 65536 -- | @2^16@ instance Finite Word16 where type Cardinality Word16 = 65536 -- | @1114112@ instance Finite Char where type Cardinality Char = 1114112 -- | @1 + a@ instance (Finite a) => Finite (Maybe a) where type Cardinality (Maybe a) = 1 + (Cardinality a) -- | @a + b@ instance (Finite a, Finite b) => Finite (Either a b) where type Cardinality (Either a b) = (Cardinality a) + (Cardinality b) {-| the cardinality is a product of cardinalities. -} instance (Finite (f a), Finite (Rec f as)) => Finite (Rec f (a ': as)) where type Cardinality (Rec f (a ': as)) = (Cardinality (f a)) * (Cardinality (Rec f as)) -- | @1@ instance Finite (Rec f '[]) where type Cardinality (Rec f '[]) = 1 {- class Finite (Mod i n) where type Cardinality (Mod i n) = n -} -- | @a*b@ instance (Finite a, Finite b) => Finite (a, b) -- | @a*b*c@ instance (Finite a, Finite b, Finite c) => Finite (a, b, c) -- | @a*b*c*d@ instance (Finite a, Finite b, Finite c, Finite d) => Finite (a, b, c, d) -- | @a*b*c*d*e@ instance (Finite a, Finite b, Finite c, Finite d, Finite e) => Finite (a, b, c, d, e) -- | @a*b*c*d*e*f@ instance (Finite a, Finite b, Finite c, Finite d, Finite e, Finite f) => Finite (a, b, c, d, e, f) -- | @a*b*c*d*e*f*g@ instance (Finite a, Finite b, Finite c, Finite d, Finite e, Finite f, Finite g) => Finite (a, b, c, d, e, f, g) -- | @2^a@ instance (Finite a) => Finite (Set a) where type Cardinality (Set a) = 2 ^ (Cardinality a) -- | @b^a@ instance (Finite a, Finite b) => Finite (a -> b) where type Cardinality (a -> b) = (Cardinality b) ^ (Cardinality a) -------------------------------------------------------------------------------- type family GCardinality (f :: * -> *) :: Nat type instance GCardinality (V1) = 0 type instance GCardinality (U1) = 1 type instance GCardinality (K1 i a) = Cardinality a type instance GCardinality (f :+: g) = (GCardinality f) + (GCardinality g) type instance GCardinality (f :*: g) = (GCardinality f) * (GCardinality g) type instance GCardinality (M1 i t f) = GCardinality f -------------------------------------------------------------------------------- {-| >>> reifyCardinality ([]::[Bool]) 2 -} reifyCardinality :: forall a proxy. (KnownNat (Cardinality a)) => proxy a -> Natural reifyCardinality _ = fromInteger (natVal (Proxy::Proxy (Cardinality a))) {-| typechecks only when the constraint is satisifed. a constaint. -} type CardinalityWithin n a = IsCardinalityWithin n a ~ True {-| a predicate, inclusive. @ > type CardinalityWithinAMillion a = CardinalityWithin 1000000 a > :kind! CardinalityWithinAMillion Bool True > :kind! CardinalityWithinAMillion Char False @ -} type IsCardinalityWithin n a = Cardinality a <=? n {- >>> :set -XDataKinds >>> :set -XConstraintKinds >>> :set -XTypeFamilies >>> type CardinalityWithinAMillion a = CardinalityWithin 1000000 a >>> :kind! CardinalityWithinAMillion Bool True >>> :kind! CardinalityWithinAMillion Char False -} -- {-| enumerate only when the cardinality is small enough. -- -- >>> enumerateWithin 2 :: Either Natural [Bool] -- Left 2 -- -- >>> enumerateWithin 100 :: Either Natural [Bool] -- Right [False,True] -- -- useful when you've established that traversing a list below some length -- and consuming its values is reasonable for your application. -- e.g. after benchmarking, you think you can process a billion entries within a minute. -- -- -} -- enumerateWithin :: forall a. (Enumerable a) => Natural -> Either Natural [a] --TODO move -- enumerateWithin maxSize = if theSize < maxSize -- then Right enumerated -- else Left theSize -- where -- theSize = cardinality (Proxy :: Proxy a)